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This document is intended to demonstrate the basic usage of mbir (Magnitude-Based Inferences via R).
Users must be aware that mbir was originally inspired by the work of Will Hopkins', and intended to
inaugurate his work to the R community. Therefore, to give credit where credit is due, this treatise will
formally declare which segments of mbir were directly derived from Hopkins.

Also, the purpose of mbir is to provide practitioners, and researchers, a wholesale approach for deriving
magnitude-based inferences from raw data. That is, in lieu of relying on practitioners to determine correct
stepwise procedures independently, mbir programmatically detects appropriate statistical test(s) to run per
the given data. This utility may serve as an educational tool to some (or perhaps alleviate doubt), but
most importantly, will deliver a consistent platform for R users who aspire to employ this type of analysis.
Respective functionalities will be dissected in later sections.

THopkins WG. sportsci.org.



Overview

Section 1: Data Functions

To start, mbir is currently equipped to analyze independent or paired, two-sample data. (Subsequent versions
are planned to broaden the package’s utility). Functions that end in “_test” are meant to accept raw data
and perform statistical tests. The following functions are to investigate difference in means and associations,
respectively:

e smd_test()
e corr_test()

Section 2: Input Functions
On the contrary, functions listed below are structured to compute magnitude-based inferences for users who
may have already performed statistical tests on their own:

e smd()
e corr()
e 0dds()

The additional functions below allows users to apply magnitude-based thinking when analyzing two
proportions and two correlations, respectively:

e prop()
e corr_diff()

Section 3: Sample Size Functions
To appease the research-minded practitioners, functions that start with “ss_” assist with the critical decision
of a priori sample size planning that correspond to the three input functions listed above:

e ss_smd()
e ss_corr()
e ss_odds()

For users who may prefer Accuracy in Parameter Estimation (AIPE) - the closely akin methodology
to sample size planning via precision - can be employed with the below function:

e aipe_smd()

Section 4: Miscellaneous Functions
If perhaps users are not familiar with a given effect size measure, es_convert () provides the service of
converting between equivalent effect size measures.

If users wish to calculate confidence intervals via resampling, boot_test () is a convenient function
for this task.

Lastly, swc_ind() assesses longitudinal change of an individual’s performance measurements in a
linear fashion.



Section 1: Data Functions

mbir Data Functions are designed to accept raw data and execute appropriate statistical test(s) programmat-
ically. The thematic operation of mbir Data Functions follow the statistical progression of:

1. Explore Assumptions
2. Perform Null-Hypothesis Statistical Test(s)
3. Calculate Effect Size(s)

4. Compute Magnitude-Based Inferences
Each of these steps are obligatory for proper statistical estimations of effect, which was a major
incentive for the creation of mbir. Let’s now examine the underlying mechanisms and implementation of
mbir Data Functions.

1.1. smd_test()

The objective of smd_test () is to express difference in means between two continuous data vectors (standard-
ized mean difference). The study design may be independent group differences or paired group differences
(e.g. pre-post analysis). As the overarching goal of mbir is to provide an automated sequence of statistical
decisions, smd_test () descends raw data down the correct path(s) illustrated in Figure 1 and described

below:
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Figure 1: decision tree illustration



1) Explore Assumptions:

In order to perform parametric tests, data must fit parametric assumptions, otherwise the results are
likely improper. To start, parametric tests assume a Gaussian (normal) distribution. Rather than visually
inspecting normality via histograms or Q-Q plots, quantifying the shape of the distribution allows for objective
decision-making. smd_test () employs the Shapiro-Wilk test to check whether the distribution deviates from
a comparably normal shape (i.e. compares the scores in the sample to a normally distributed set of scores with
the same mean and standard deviation). If the test is non-significant (p < 0.05) informs us that the sample
is not significantly different from normal, indicating the assumption is observed. In this case, smd_test ()
answers “Yes” to the normality assumption and descends left in Figure 1. The next required assumption is
homogeneity of variance (equal variance between vectors). This step is quantified via the F-test to examine
the ratio of the two variances. As with the Shapiro-Wilk test, non-significance informs us that homogeneity
is assumed, and again, answers “Yes” in the decision tree (Figure 1) which ultimately dictates which ¢-test
performed (will be discussed soon).

Before moving on however, if perhaps the data is non-normal, this suggests applying a transformation to
counteract the present skewness. Unforutnately, deciding whether to remain parametric versus nonparametric
is difficult to justify numerically, so smd_test () provides both. On the parametric side, log-transformation is
a common technique to correct for positive skewness, and is especially common amongst the sport community.>
However, as there is no logarithm of the value zero, if zeros are detected amongst data vectors, a constant
of 1 is added to original scores before transformation. The advantage of adding 1 is that the logarithm
of 1 is actually equal to zero, so scores of zero before transformation conveniently return to zeros after
transformation. The nonparametric alternative is to rank-transform (i.e. lowest score is given rank 1, next
highest score rank 2, etc), which permits less restrictive distributional assumptions than it’s parametric
counterpart. The analysis is then carried out on the ranks in lieu of the raw data, which is an ingenious
maneuver around the parametric assumptions.

2) Null-Hypothesis Statistical Testing:

Once the assumptions and/or transformations are accounted for, the succeeding step is to perform
the determined hypothesis test. On the parametric side (after considering normality) the homoscedastic
assumption dictates the type of t-test applied. To quickly substantiate, if the two variances are equal there
is only one source of uncertainty to account for as the standardizer (developed by WS Gosset, “Student”),
whereas there are two sources of uncertainty to account for if variances are unequal (BL Welch method). On
the nonparametric side, the Wilcoxon derivatives (sign-rank, paired design; rank-sum, independent design)
are the nonparametric, rank-transformed equivalent to the ¢-tests.

3) Effect Size:

Upon acquiring NHST parameters, the job is not done. Dogmatic p-values fail to express the level of
impact, or magnitude, of effect - as this parameter is confounded on both n and observed effect,® leading to
deceitful interpretations. Rather, a popular solution to this critism is to standardize the magnitude of effect,
known as effect size, and thus serves as a foundation of mbir to supplement the determination of effects
under consideration. Numerous effect size measures exist, but the most common are Cohen’s d, Pearson’s
r and odds ratios, and are one of the final steps of smd_test() to programmatically calculate from the
corresponding NHST parameters.

In a nutshell, when a Gaussian distribution is detected, the terminal effect size is Cohen’s d, which is
purely the effect size in original units divided by the appropriate standard deviation (which mbir automatically
detects). Therefore, Cohen’s d can be interpreted as untis of standard deviations, and is sometimes called
standardized mean difference, hence the “smd” acronym.

e Unfortunately, d overestimates size of effects with small sample sizes. Consequently, to reduce bias and
avoid overestimating d, an approximate adjustment factor is applied to d when degrees of freedom are

2Hopkins WG, Marshall SW, Batterham AM & Hanin J. (2009). Progressive statistics for studies in sports medicine and
exercise science. Medicine & Science in Sports €9 Exercise, 41, 3-13.
3Lang JM, Rothman KJ, & Cann CI. (1998). That confounded P-value. Epidemiology, 9, 7-8.



below 30.% Thereafter, daqj represents the adjusted effect size value.

Upon log-transformation, exponentiating the confidence intervals of the log-transformed difference
consequently bestows a difference in geometric means.> Subsequently taking the difference between these two
values captures the point estimate - that is, on the log scale: log(a)-log(b) = log(a/b), which can be vaugely
interpreted in a similar manner as an odds ratio (but technically is the ratio of geometric means). On the
nonparametric side, dividing the z value by the square root of n stealthily arrives at r.

o Effect size confidence intervals are provided for each analysis to disclose the precision of observed effect
size, or perhaps the maximum likely estimation error.

4) Magnitude-Based Inferences:

The final calculations aggregate the aforementioned statistical parameters to ultimately formulate
magnitude-based inferences of effects. Calculations were reverse-engineered from Hopkins’s cited spreadsheet®
and transcribed into the R language. Users are welcome to use mbir Input Functions (Section 2) to directly
compare their numerical results to the respective spreadsheet and thereby confirm mbir calculations are
correct.

To quickly abbreviate, magnitude-based inferences offer a form of inference in which the parameter is
partitioned into three regions corresponding to various qualitative aspects (substantially negative, trivial,
substantially positive). A probability is assigned to each of these regions, calculated from the assumed
distribution of the parameter estimate. To be more transparent, the obtained ¢ statistic is adjusted (updated)
by the calculated effect size before justifying the cumulative probability distribution. (This marvelous
statistical modulation has therefore been coined “pseudo-Bayesian”). Fach mbir function presents the
observed magnitude of effect, as well as the precision of estimation. P-values are shown for the sake of
formality, but users are encouraged to highlight Hopkins’ content-rich inference: making a qualitative
statement with regard to practical significance. The last line of smd_test () output composes the appropriate
statement from given parameters, which considers both the level of confidence (possibly, likley, etc), level of
magnitude (trivial, small, moderate, etc), as well as the direction (negative, positive) of effect.

Unfortunately magnitude-based inferences has been formerly criticized for inflated probabilities of
effect (lacking conservativeness).” » 8 To counter this notion however, if an intervention is able to reproduce
a possibly small improvement in elite performance, it is therefore an arguably worthwhile and meaningful
intervention (that may have passed under the statistical radar of more conservative approaches).

4Hedges LV. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational
Statistics, 6, 107—128.

5Altman DG. (1991). Practical statistics for medical research. London, UK: Chapman and Hall.

6Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p
value. Sportscience 11, 16-20. sportsci.org/2007/wghinf.htm.

"Welsh AH & Knight EJ. (2015). “Magnitude-based inference”: A statistical review. Medicine & Science in Sports &
Exercise, 47, 874-884.

8Barker RJ & Schofield MR.. (2008). Inference about magnitudes of effects. International Journal of Sports Physiology and
Performance, 3, 547-557.



Example 1
Consider the following data set, which sampled twenty wide receiver 40-yard dash times from both 2007 and
2017 NFL combine.”

Frequency

Or NWhOWOG
I

OrLr NWhOWOG
I

I I I I I 1T 17 17 1T 171
4.3 4.5 4.7 440 455 470

2007 2017

If a practioner wanted to decipher if the prospective athletes recorded faster times in 2017 versus 2007,
smd_test () would follow the below syntax:

» x as the group of interest (2017).
o v as the null group to test against (2007).
e paired = FALSE due to the independent study design.

mbir::smd_test(x = now, y = then, paired = FALSE, auto = T)

## Mean of now = 4.53; Mean of then = 4.47

it Normality Observed, Equal Variance
## Method: Two Sample t-test

##

#it Raw Scale

# ot 2.095

## df 38.000

## P value 0.043

## 90% CI LL 0.011

## 90% CI UL 0.104

##

## Cohen d = 0.66
## 90% CI [0.13, 1.2]

##

## Magnitude-Based Inference

##

## Most Unlikely Possibly Possibly
#i# "Lower" "Trivial" "Higher"
## MBI (%) "o" "30.5" "69.5"
##

## Inference: Possibly Moderate Increase.

9nflcombineresults.com



smd_test() output first provides the mean for the respective groups, followed by the detected
assumptions and statistical test performed. Since normality and homoscedasticity were observed, the
Student’s ¢-test was executed upon the raw data (which can be confirmed by following the decision tree
path in Figure 1). After displaying the ¢-test parameters, we see Cohen’s d of 0.66 (+ 0.54) attributes to a
moderate effect size magnitude (according to Hopkins’ thresholds). However, applying the qualitative language
associated with the magnitude-based inferences (last line of smd_test () output), we can add possibly to our
conclusion statement.

Since the effect size unit ended up positive, this infers that 2017 times were actually slower than 2007
(an increase in time). Therefore, the concluding statement to the above scenario would be something to the
effect of:

“Wide receivers from the 2017 NFL combine recorded slower 40-yard dash times than wide
receivers from the 2007 NFL combine by a possibly moderate degree (d = 0.66 + 0.54).”

Example 2

Consider this fictional data set of pre-test post-test pull up values. Notice the large positive skewness, as the
majority of pre-test values reside between 0-4 with a handful of outliers who record more than 6 pull ups.

g 15
S 10 —
:‘»-)_ 10 — .
L S ]
0 = ——— 0 = ——7—
2 4 6 8 2 4 6 8
Pre—-Test Post—Test

If a practitioner wanted to decipher if there was a positive effect after some training intervention,
smd_test () would be used in the following manner:

e X post-test
e y pre-test
e paired = TRUE



# Named a wvariable "mag" for later below
mag<-mbir::smd_test(post, pre, paired = T, auto = T)

## Mean of post = 3.08; Mean of pre = 1.96

## Skewness Observed, Equal Variance
## Method: Paired t-test

##

## Log-Transformed

## t 2.53009

## df 24.00000

## P value 0.01838

##

#i Factor = 1.53
## 90% CI [1.15, 2.05]

##

## Magnitude-Based Inference

##

#it Most Unlikely Very Unlikely Most Likely
#i# "Lower" "Trivial" "Higher"

## MBI (%) "0.2" "3.6" "96.2"

## Inference: Most Likely Small Increase.

HH -
#it Nonparametric Inference

it Method: Wilcoxon signed rank test

##

## Rank-Based

## v 144.000

## P value 0.046

## 90% CI LL 0.000

## 907, CI UL 2.500

##

## r =0.28
#i# 90% CI [-0.06, 0.57]

##

## Magnitude-Based Inference

##

## Very Unlikely Unlikely Likely

## "Negative" "Trivial" "Positive"
## MBI (%) "3.4" "15.2" "81.4"

##

## Inference: Likely Small Effect Size

Since the raw data deviated far from a Gaussian distribution, transformations were applied to correct
for such violation. Regarding the parametric inference, quite significant NHST parameters are calcualted.
However, what is more telling is that post-test values recorded 1.53 (£ 0.45) times more pull ups than pre-test,
resulting in a most likely small increase. Before moving on though, let’s consider the philosophy behind
Frank Wilcoxon’s underutilized, yet elegant, nonparametric methodology - as it may provide better context
for answering the present question.

The Wilcoxon signed-rank test operates in a fairly similar manner as the paired ¢-test (based on the
difference between two conditions). Once these differences between pre-/post-test are calcualted they are
numerically ranked with the sign of the difference (positive/negative) assigned to each rank (zeros excluded).
In the end, the sum of the positive ranks are tested against the sum of the negative ranks. Thinking back
to the pull up scenario, this logic dovetails nicely with the question at hand: how many athletes improved,



performed equal, or worse from pre-test to post-test? The nonparametric analysis indeed appreciates that
a select few experienced a performance decay (r 90% lower bound: -0.06) while most reaped a positive
adaptation (r 90% upper bound: 0.57). Therefore, the present conclusion would take on the following argot:

“After 4-week training intervention, athletes exhibited a likely small increase in pull up performance
(r =0.28 £ 0.32)”

1.2. corr_test()

The objective of corr_test() is to express associations between two continuous data vectors. Paralleling
swd_test (), cor_test () accepts raw data and provides an automated sequence of statistical decisions. The
statistical progression for correlation is far more superficial compared to difference of means. The major
assumption of Pearson correlation is that the data follows a bivariate Gaussian disribution. If the given
data set deviates from said distribution, Spearman’s rank correlation is implemented instead (association
of rank-transformed data). Spearman’s standardized unit of measurement is p (rho), but is interpreted the
same as the linear r. Simply supplying two data vectors to corr_test() (x, y) delivers an output analogous
to smd_test ().



Section 2: Input Functions

The next set of functions are intended to emulate the experience of Hopkins’ Microsoft Excel spreadsheet!®
within the R environment. However, if users are not comfortable with performing proper statistical tests and
inputing the parameters independently, they are gladly prompted to use mbir Data Functions in Section 1.

2.1. smd(Q)

The syntactic structure of smd() requires the following t-test parameters:

o effect size measure (Cohen’s d)
e p-value
o degrees of freedom

mbir::smd(es = 0.7, p = 0.02, df = 24)

## Standardized Mean Difference:
## es = 0.7

#it p value = 0.02

#it 90% CI [0.22, 1.18]

#i#

## Magnitude-Based Inference

#it

## Most Unlikely Unlikely Likely

#it "Negative" "Trivial" "Positive"
## MBI (%) "o" "24.2" "75.8"

#i#

## Inference: Likely Moderate Increase.

2.2. corr()

The syntactic structure of corr() requires the following correlation parameters:

o T
L

mbir::corr(r = 0.22, n = 30)

#it Correlation Coefficient:

## r = 0.22

#i# n = 30

## 90} CI [-0.09, 0.49]

#i#

## Magnitude-Based Inference

#it

#it Very Unlikely Unlikely Possibly
#i# "Negative" "Trivial" "Positive"
## MBI (%) "4.6" "21.5" "73.9"
#it

## Inference: Possibly Small Positive Correlation.

10Hopkins WG. (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p
value. Sportscience 11, 16-20. sportsci.org/2007/wghinf.htm.
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2.3. odds()

The syntactic structure of odds () requires the following test parameters:

e odds ratio
e p-value

mbir::odds(or = 3.25, p = 0.06)

## Odds Ratio:

#i or = 3.25

#it p value = 0.06

it 90% CI [1.16, 9.11]

##

## Magnitude-Based Inference

##

it Very Unlikely Very Unlikely Most Likely
#i# "Negative" "Trivial" "Positive"
## MBI (%) "2" "2.3" "95.7"

##

## Inference: Most Likely Small Increase

2.4. prop()

A moderately common research question asks about the relation, or difference, between two nominal variables,
producing a 2x2 data set called a frequency table. The approach in answering questions about such a table is
to calcualte the difference between two proportions.

The syntactic structure of prop() simply requires the proportions and sample sizes of each group
under consideration:

mbir: :prop(pl, nl, p2, n2)

For a brief example, consider this fictitious plot:

Imagine there were two teams that recorded the same number of minor overuse injuries during the
off-season, say 10 athletes. However, someone recognized that the roster size for Team 1 was 19, whereas the
roster size for Team 2 was 26 - that is, on a relative scale, over half of Team 1 accrued an overuse injury
(10/19 = 53%) versus only 38% of Team 2 (10/26). Upon immediate realization, 53% was perceived as
substantially higher than 38%, causing some people to question whether the coach of Team 1 should be
castigated. However, before jumping to rash conclusions, this person first utilized prop() to help construct
the proper locution. Let’s peer inside the results of the given scenerio:

mbir: :prop(pl = 0.53, nl = 19, p2 = 0.38, n2 = 26)

## Test of Two Proportions:
#i#t diff = -0.15

## chi-sq =1

#it 90% CI [-0.37, 0.09]

## p value = 0.37

#i#

#i# phi = 0.15

#it

## Magnitude-Based Inference
#i#

#H# Possibly Possibly

11



## "Trivial" "Substantial"
## MBI (%) "37.2" "62.8"

##

## Inference: Unclear Effect Size.

It appears that coach of Team 1 lucked out! There was an unclear differentiation between the two
relative measures (also, notice how zero resides between the confidence intervals). However, this was a close
call considering that ® is beyond the small threshold. Perhaps with a slightly larger n magnitude-based
inferences would have quantified a possible effect.

o Note: since x? distribution is positive, magnitude-based inferences must surpass possibly substantial
threshold in order to detect effects. Also, trivial effects must not transcend unlikely threshold.

2.5. corr_diff()

Upon testing correlations via corr_test() or corr(), users may want to decipher a post hoc difference
between two acquired correlations. The syntactic structure of corr_diff () requires the following test
parameters:

mbir::corr_diff(rl, nl, r2, n2)

For a brief example, consider this fictitious plot:

Suppose a practitioner used corr_test() twice to derive correlations between subjective body image
satisfaction scores and overall well-being for both female and male athletes. The female group exhibited
a most likely large positive association of r = 0.53 (n = 30), while the male group revealed a most likely
moderate positive association of r = 0.41 (n = 38). However, if the ultimate question was whether body
satisfaction is more essential to well-being for females than males, the practitioner needs to test the confidence
interval on the difference:

# Female correlation test
female<-mbir::corr_test(F$bodyimage, F$wellbeing)

# Male correlation test
male<-mbir::corr_test (M$bodyimage, M$wellbeing)

# Test of Two Correlations
mbir::corr_diff(rl = male$r.stat, nl = 38, r2 = female$r.stat, n2 = 30)

## Test of Two Correlations:
## diff = 0.12

#H# 90% CI [-0.28, 0.57]

#it p value = 0.55

Even though the two correlations display strong evidence towards their associations independently,
the practitioner cannot conclude that one of the groups has a stronger relationship compared to the other
(i.e. the two positive correlations do not differ). In the end, the conclusion would be there is considerable
uncertainty between groups, as the difference in correlations for females and males (r2 - r; = 0.12) could
plausibly be as low as -0.28 or as high as 0.57.

12



Section 3: Sample Size Functions

Now let’s turn to the central planning issue of determining n. It is safe to say that a primary objective of
fundamental statistics is to minimize the error (or maximize precision) of estimation, and since sample size
resides in the denominator of the standard error, increasing sample size inherently decreases standard error.
However, in terms of time, resources, and funding, researchers must establish a n that will give the most
bang for their buck - that is, the minimum sample size that will uncover a meaningful effect.

The traditional NHST approach for sample size determination is power analysis, which means that
power bears all the NHST limitations. Therefore, if practitioners wish to use magnitude-based inferences for
analysis, it is wise to declare prospective sample sizes within the magnitude-base framework. The first three
mbir Sample Size Functions are based upon Hopkins’ speadsheet for sample size estimation,'! which require
users to input desired n and desired effect size to estimate the magnitude-based inferences from the given
parameters. However, this approach may take some time with numerous iterations to acheive sought-after
parameters.

Alternatively, a swifter tactic is to calculate n algebraically from a desired margin of error. This
technique is called Accuracy in Parameter Estimation (AIPE),? - 13 which is based on the notion of maximizing
precision of estimates for the standardized mean difference. AIPE can be employed with aipe_smd () and
will be discussed in further detail below.

3.1. ss_smd()

The syntactic structure of ss_smd() requires the following parameters:

o exp desired size of experimental group
e con desired size of control group
o es desired effect size (Cohen’s d)

mbir::ss_smd(exp = 20, con = 18, es = 0.6)

## n = 38

## es = 0.6

##

#H# Estimated:

## Magnitude-Based Inference

##

## Very Unlikely Unlikely Likely

#it "Negative" "Trivial" "Positive"
## MBI (%) "0.9" "10.4" "88.7"

##

## Inference: Likely Moderate Increase.

HHopkins WG. (2006). Estimating sample size for magnitude-based inferences. Sportscience 10, 63-70.
sportsci.org/2006/wghss.htm

2Maxwell SE, Kelley K & Rausch JR. (2008). Sample size planning for statistical power and accuracy in parameter estimation.
Annual Review of Psychology, 59, 537-563.

13Kelley K & Rausch JR. (2006). Sample size planning for the standardized mean difference: Accuracy in parameter estimation
via narrow confidence intervals. Psychological Methods, 11, 363-385.

13



3.2. ss_corr()

The syntactic structure of ss_corr() requires the following parameters:

e n desired number of data pairs
e 1 desired correlation coefficient

mbir::ss_corr(n = 25, r = 0.25)

#i# n: 25

#i# r: 0.25

##

## Estimated:

## Magnitude-Based Inference

##

#H# Very Unlikely Unlikely Likely

#i# "Negative" "Trivial" "Positive"
## MBI (%) "4.8" "18.5" "76.7"

##

## Inference: Likely Small Positive Correlation.

3.3. ss_odds()

The syntactic structure of ss_odds() requires the following parameters:

e exp desired size of experimental group
e con desired size of control group
e odds desired odds ratio

mbir::ss_odds(exp = 12, con = 16, or = 2.5)

## n = 28

## OR = 2.5

##

## Magnitude-Based Inference

##

## Unlikely  Unlikely Likely

## "Negative" "Trivial" "Positive"
## MBI (%) "8.9" "5.3" "85.8"

##

## Inference: Unclear Difference.

3.4. aipe_smd()

As mentioned above, AIPE in centered around the idea of precision. How wide could a confidence interval be
while still providing useful information? What is the maximum error of estimation we are willing to accept?
These are the forms of questions that can be answered via AIPE. The unit of error estimation for AIPE is
the margin of error (MOE), expressed in standard deviation units, f. Luckily, Cohen’s d is also interpreted
as a fraction of standard deviations. Therefore, when working with aipe_smd (), feel free to think of MOE
synonymous with Cohen’s d.

Suppose a team of investigators establish an independent study design with the desired precision of f
= 0.5 at the 90% confidence level. (That is, with a 90% CI they are willing to accept a Cohen’s d of + 0.5).
Let’s examine how this team would implement aipe_smd():

14



e moe 0.5 target margin of error
e paired = F independent design
o conf.int (optional) defaults to 90%

mbir::aipe_smd(moe = .5, paired = F)

## Independent Design

## MOE 0.5

## CI 0.9

##

## Estimated Sample Size (per group)
## n = 24

##

## With 997, Assurance

## n = 34

The output demonstrates that in order to achieve MOE no more than 0.5 the team needs at least 24
subjects in each group. Taking this one step further, if the team wanted to know what percent of experiments
would produce a MOE smaller than their target MOE, they would refer to the second given sample size
regarding assurance. (Assurance calculates n based upon how many experiments would yield more precision
than the target MOE in the long-run). To interpret the present scenario, 99 out of 100 experiments with n =
34 per group would provide more precision than 0.5.

o aipe_smd() defaults to 99% assurance, but users are welcome to adjust with assur.lvl arugment.

Shifting to the paired design, the only additional argument is to provide the correlation between the
two measures. At first, pre-test post-test correlations may seem a bit tricky to project, however, referring to
prior literature gives good orientation of what previous researchers have observed. r is also quite influential
in AIPE calculations, so please be mindful when establishing 7.

An example paired design would therefore follow the structure of:

mbir::aipe_smd(moe = .5, paired = T, r = .65)

## Paired Design

## MOE 0.50

## CI 0.90

## r 0.65

#i#

## Estimated Total Sample Size
## n = 10

##

## With 997 Assurance

## n = 16

Due to the underlying sensitivity paired designs present, notice the considerable reduction in sample
size required to obtain equal precision.

15



Section 4: Miscellaneous Functions

4.1. es_convert()

If perhaps users are not familiar with a given effect size measure from say, smd_test (), they are encouraged
to convert between equivalent effect size unit of choice. es_convert() provides the service of converting
between Cohen’s d, r, and odds ratio.'4 » 15

)

Example

The syntactic structure of es_convert() is of the form:

mbir: :es_convert(x, from = c("d", "or", "r"), to = c("d", "or", "r"))

Simply entering the final effect size measure (say, a pearson r of 0.20), declaring the current unit
(from = "r"), and stating what unit to convert to (to = "or") delivers:

mbir::es_convert(0.2, from = "r", to = "or")

## Effect Size Conversion
## r = 0.2
## or = 2.1

If users wish to include effect size confidence intervals from preceding smd_test () results within one
line of code, they may do so as such:

# Section 1.1. pre-test post-test 40 yard dash example:
mag<-mbir::smd_test(post, pre, paired = T, auto = T)

# Wish to convert given Odds Ratio to Cohen's d:
mbir::es_convert(c(mag$or.LL, mag$or.stat, maghor.UL), from = "or", to = "d")

## Effect Size Conversion
## or = 1.15 1.53 2.05
## d = 0.08 0.23 0.4

4.2 boot_test ()

Perhaps a given data set does not follow a Gaussian distribution, or even after log-transformation there
are still major outliers present. If this is the case, bootstrapping is an attractive alternative for deriving
nonparametric confidence intervals via resampling, as it does not assume a distribution. The simple, yet
exquisite, bootstrap procedure is as follows:

1) Sample n observations (with replacement) from each independent data vector.

2) Compute the statistic of interest from each “bootstrapped” sample (mbir calculates the median to
ensure a robust estimation of central tendency).

3) Calculate and record the difference in medians between the two “bootstrapped” samples.

MRosenthal R. (1994). Parametric measures of effect size. In H. Cooper & LV. Hedges (Eds.), The Handbook of Research
Synthesis. New York, NY: Sage.

15Borenstein M, Hedges LV, Higgins JPT & Rothstein HR. (2009). Introduction to Meta-Analysis. Chichester, West Sussex,
UK: Wiley.
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4) Repeat the above steps a large number of times to obtain a list of difference in medians (mbir
defaults to 10,000 repetitions).

5) Finally, the bootstrap confidence interval is simply the interval that contains the lower and upper
bound of the observed difference in medians. mbir defaults to 90% confidence interval, so in this case, the
5th and 95th percentile of this final vector is the 90% bootstrap confidence interval.

e The method described above is called percentile-based resampling confidence interval. Subsequent
versions may entail other bootstrap derivatives upon user requests.

Example

Consider a data set representing SRPE scores from both “low” and “high” days, respectively. Let’s say
a user wants to determine if they can definitively say that their athlete’s “high” sessions are being perceived
higher than the “low” sessions. After noticing the apparent skewness presented in “low” data set, the user
could use boot_test () as a hasty resource to evade any distributional assumptions (smd_test () would also
be appropriate, of course, but boot_test () will be used for sake of example).

> 15 8
5 10 6
S 4
r ° 2
0 | | | | 0 [ R
0 500 1500 200 600 1000
Low Sessions High Sessions

The syntactic structure of boot_test () is of the form:

mbir: :boot_test(x, y, conf.int, resample, med)

The only required arguments are to provide two numeric data vectors for x and y. Beyond this,
specified confidence intervals may be supplied (default is 90%), number of resampling repititions (defaults to
10,000), as well as a specified true median to test against (defaults to 0).

In our example, the user specifically wants to test whether “high” sessions are at least 100 units above
“low” sessions in order to definitively say there is a difference. Therefore, boot_test () would be used in the
following manner:

mbir: :boot_test(high, low, med = 100)

## Median of high = 420; Median of low = 276
##

## 907 Bootstrap Confidence Interval

## 10,000 Resamples

##
## 5% 95%
## 69 224
##

## Difference in Medians: Lacking Evidence (CI contains 100).
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The histogram illustrates the bootstrapped distribution of the resampled difference in medians. If the
dashed line (med) is within the solid lines (confidence intervals), evidence of effect is absent. Conversely, if
med is outside the confidence intervals, evidence of effect is present.

Regarding the sSRPE data set, surely an effect is present, but unfortunately the user can not definitively
say there is a difference of 100 after resampling, as the 90% confidence interval contains 100 (dashed line
between solid lines).

4.3 swc_ind ()

Applying magnitude-based inferences to the longitudinal trend of an athlete’s performance measurements
can be implemented with swc_ind (). Two types of analyses can be explored with swc_ind(): magnitude of
change from an individual’s preceding measurement, and the degree of deviation from their overall trend.'®

Specifying “previous” under the type argument will execute the first type of analysis, illustrating
magnitude-based inferences regarding the change between each time point. Simply supply raw measurement
values in ascending chronological order (first measurement in row 1, most recent measurement in nth row)
and swc_ind () will provide partitioned magnitude-based inferences accompanied with qualitative inferences
of either increase or decrease from previous time point. The function also provides a visual demonstrating
relative change, including vertical error bars (typical error) with each data value. Measurements are linearly
connected to express the inherent repeated measure analysis, while underlaying the smallest worthwhile
interval bands to supplement the visual trend.

For “previous” analysis, the syntactic structure of swc_ind() involves the following parameters:

e x numeric data vector of an individual’s performance measurements
o swc (%) smallest worthwhile change

e type “previous”

o te (optional) typical error of measurement

6Hopkins WG. (2017). A spreadsheet for monitoring an individual’s changes and trend. Sportscience 21, 5-9.
sportsci.org/2017/wghtrend.htm
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df<-c(97.5,99.9,100.2,101.1,101.3,99.8)
mbir::swc_ind(x = df, swc = 0.25, te = 1, ts = 0.2, type = "previous")

101 102
|

99 100
| |

98
|

Measurement

## MBI From Previous Time Point:

##

#i# Diff N T P MBI
# 1 -2 2.4 8 4 88 Likely Increase
# 2 - 3 0.3 37 12 51 -
## 3 - 4 0.9 26 9 65 -
## 4 - 5 0.2 40 11 49 -
# 5 -6 -1.5 76 7 17 -

Smallest worthwhile change argument requires users expertise regarding their particular data/athlete.
With a lack of context, it would be negligent to provide a default value for each situation. On the other hand,
typical error defaults to the standard error of the linear regression residuals, but practitioners can certainly
modify as needed.

Regarding the output table, from left to right, first describes the raw difference from preceding time
point in ascending chronololgical order, followed by the probabilistic magnitude-based inference relating to
the direction of change (“N” negative, decrease; “T” trivial; “P” positive, increase). On the far right are the
qualitative inferences if detected (dashed lines represent unclear change, otherwise specified). The current
example displays a likely increase from measurement 1 to measurement 2. Otherwise, no meaningful change
was detected beyond time point 2.

Transitioning to the other offered analysis, “trend”, permits user to assess linear trajectory of measure-
ments, as well as the degree of which each measurement deviates from the line of best fit. When “trend” is
specified, users will be granted information regarding traditional regression statistics comparing values to a
null model (in case of literature pursuit), such as: 3 coefficient (slope), R?, F-ratio and p-value. However, to
apply magnitude-based inferences towards the linear trend requires an additional argument to specify; an
anticipated slope (£) to test against.
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For “trend” analysis, the syntactic structure of swc_ind() involves the following parameters:

e x numeric data vector of an individual’s performance measurements
o swc (£) smallest worthwhile change

e type “trend”

o ts (&) target slope

1, ts = 0.2, type = "trend")

mbir::swc_ind(x = df, swc = 0.25, te

N

o

S

o

o

S

»

»

0

»

~

o

I I I I I I
1 2 3 4 5 6
Measurement

## Trend Parameters:
## Slope 0.474
## R-squared 0.283
## F stat 2.973
## P value 0.160
##
## Very Unlikely Unlikely Likely
## "Decrease" "Trivial" "Increase"
## MBI (%) II3II ||20|l u77||
#i#t
## MBI From Trend Line:
##
## Point Diff N T P MBI
## 1 -1.3 88 7 b5 Likely Lower
## 2 0.6 26 12 62 —-—=
## 3 0.5 30 13 57 —-—=
## 4 0.9 21 11 68 —-—=
## 5 0.6 26 13 61 —-—=
## 6 -1.4 90 5 b5 Very Likely Lower
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Below the given Trend Parameters is the magnitude-based inference about the slope against the target
slope. In the current example, the slope of 0.474 is likely higher than the specified 0.25. The last table
describes magnitude-based inferences of how far each time point vertically deviates from regression line
(essentially an analysis of residuals). The current example displays that the first measurement is likely lower
than the trend line, as well as measurement 6 being very likely lower. Otherwise, no meaningful deviations
are detected.

Disclaimer

The author and maintainer of mbir, Kyle Peterson, on no account intends to take undue credit from WG
Hopkins. The sole purpose of mbir package is to appreciate Hopkins’ work and provide a resource for R
users. Also, not every function directly represents Hopkins’ A New View of Statistics. Please be mindful of
citations within present document.

The current version of mbir by no means is considered terminal. Feedback from users is welcome,
and would be sincerely appreciated, to help improve functionality of mbir where warranted. Please refer to
DESCRIPTION file for contact information.
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